How Cyanobacteria Use Solar Energy to Produce Biofuel

2019-08-05

The world is looking for methods to replace fossil fuels with a carbon-neutral product created from solar energy, carbon dioxide and water. Researchers at Uppsala University have now successfully produced microorganisms that can efficiently produce butanol using carbon dioxide and solar energy, without requiring to use solar cells.

Source: Process worldwide

Uppsala/Sweden — The knowledge and ability to modify cyanobacteria to produce a variety of chemicals from carbon dioxide and solar energy is emerging in parallel with advances in technology, synthetic biology, genetically changing them. Scientists at the University of Uppsala have designed and created a series of modified cyanobacteria that gradually produced increasing quantities of butanol in direct processes. Through a combination of technical development, systematic methods and the discovery that as more product removed from the cyanobacteria, the more butanol is formed, their study shows the way towards realizing this concept.

Read more about Peter Lindblad and Pia Lindbergs biofuel research.

Fler nyheter

How Cyanobacteria Use Solar Energy to Produce Biofuel

2019-08-05

The world is looking for methods to replace fossil fuels with a carbon-neutral product created from solar energy, carbon dioxide and water. Researchers at Uppsala University have now successfully produced microorganisms that can efficiently produce butanol using carbon dioxide and solar energy, without requiring to use solar cells.

Source: Process worldwide

Uppsala/Sweden — The knowledge and ability to modify cyanobacteria to produce a variety of chemicals from carbon dioxide and solar energy is emerging in parallel with advances in technology, synthetic biology, genetically changing them. Scientists at the University of Uppsala have designed and created a series of modified cyanobacteria that gradually produced increasing quantities of butanol in direct processes. Through a combination of technical development, systematic methods and the discovery that as more product removed from the cyanobacteria, the more butanol is formed, their study shows the way towards realizing this concept.

Read more about Peter Lindblad and Pia Lindbergs biofuel research.