Disputation: Avoiding ageing: Surface degradation of commercial electrode materials in lithium-ion batteries

The battery market today expands rapidly, not least for electric vehicles. But to compete against the combustion engine, the cost of batteries must be reduced. After years of usage, the batteries degrade and need to be exchanged, increasing the cost over the vehicle lifecycle. This can be mitigated by tailoring the usage conditions and the battery materials. Understanding and avoiding ageing can be key to a more sustainable transport system. This thesis contains studies on degradation processes in Li-ion batteries utilizing the LiNixMnyCozO2 (NMC) cathode material, and suggests strategies for the improvement of battery life time. When cycling different negative electrodes – including graphite, lithium foil and lithium titanium oxide (LTO) – against NMC electrodes, only minor capacity fading was observed in the NMC-LTO and NMC-graphite cells, in contrast to the NMC-Li-metal cells. The capacity fading for Li-metal cells was determined to be caused by degradation products formed at the lithium foil which thereafter diffused to the NMC electrode, leading to a higher resistance.

Commercial NMC/LiMn2O4-graphite cells were also investigated after cycling in limited state of charge (SOC)-intervals. The cycle life was far longer in the low-SOC cell than in the highSOC cell. Photoelectron spectroscopy revealed increased manganese dissolution in the highSOC cell, likely causing a less stable solid electrolyte interphase layer on the negative electrode. This, in turn, limits the capacity. How temperature influence ageing in NMC-LTO was analysed in cells cycled at -10 °C, 30 °C and 55 °C. It was found that the initial side reactions at the LTO electrode limited the cell capacity, but that these also stabilized the NMC electrode. At 55 °C, excessive side reactions at LTO caused capacity fading due to loss of active lithium. At -10 °C, high cell resistance limited the capacity. Switching to a PC based electrolyte allowed stable low temperature cycling, although it was found that PC degraded and formed thick electrode surface layers. Also sulfolane-based electrolytes were investigated, showing thinner surface layers than the EC containing reference electrolyte at high potentials, thus indicating a more stable electrolyte system.