3D-Mikrobatterier

Small-scale batteries less than 1 cm3, often called microbatteries, will be key for powering the internet-of-things as well as many miniature medical implants and devices. In order for such a small battery to deliver useful power, store enough energy, and at the same time being safe and non-toxic for a broad range of conditions, both the materials as well as the battery design need to be reconsidered. Therefore, we develop 3-dimensional battery designs while also employing solid-state electrolyte systems. In this work, construction of highly complex electrode structures and ultrathin layers of electrolytes are areas of research. Modelling of how the current distribution changes when employing 3D-battery designs is also necessary for input on how to build the 3D-battery system.

Vår forskning

Toward Solid-State 3D-Microbatteries using Functionalized Polycarbonate-based Polymer Electrolytes

B. Sun, H. Desta Asfaw, D. Rehnlund, J. Mindemark, L. Nyholm, K. Edström, D. Brandell

ACS Applied Materials & Interfaces, 10 (2018) 2407.

Thermal Simulations of Polymer Electrolyte 3D Li-Microbatteries

P. Priimägi, H. Kasemägi, A. Aabloo, D. Brandell, V. Zadin

         Electrochimica Acta, 244 (2017) 129.

Optimizing the design of 3D-pillar microbatteries using finite element modelling

P. Priimägi, D. Brandell, S. Srivastav, A. Aabloo, H. Kasemägi, V. Zadin

Electrochimica Acta, 209 (2016) 138.

  1. Hydroxyl-functionalized poly(trimethylene carbonate) electrolytes for 3D-electrode configurations

J. Mindemark, B. Sun, D. Brandell

Polymer Chemistry, 6 (2015) 4766.

Electrodeposition of thin poly(propylene glycol) acrylate electrolytes on 3D-nanopillar electrodes

B. Sun, D. Rehnlund, M. Lacey. D. Brandell

Electrochimica Acta, 137 (2014) 320.

Electrochemical Elaboration of Electrodes and Electrolytes for 3D Structured Batteries

M. Valvo, M. Roberts, G. Oltean, B. Sun, D. Rehnlund, D. Brandell, L. Nyholm, T. Gustafsson, K. Edström

Journal of Materials Chemistry A, 1 (2013) 9281.

Designing the 3D-microbattery geometry using the level-set method

V. Zadin, D. Brandell, H. Kasemägi, J. Lellep, A. Aabloo

Journal of Power Sources, 244 (2013) 417.

Solid polymer electrolyte coating from a bifunctional monomer for three-dimensional microbattery applications

B. Sun, I.-Y. Liao, S. Tan, T. Bowden, D. Brandell

Journal of Power Sources, 238 (2013) 435

A solid state 3D-microbattery based on Cu2Sb nanopillar anodes

S. Tan, E. Perre, T. Gustafsson, D. Brandell

Solid State Ionics, 225 (2012) 510.

Electrodeposition as a tool for 3D microbattery fabrication

K. Edström, D. Brandell, T. Gustafsson, L. Nyholm

ECS Interface, 20(2) (2011) 41.

Modelling Polymer Electrolytes for 3D-Microbatteries using Finite Element Analysis

V. Zadin, D. Brandell

Electrochimica Acta, 57 (2011) 237.

Finite Element Modelling of Ion Transport in a 3D-Microbattery Electrolyte

V. Zadin, D. Brandell, H. Kasemägi, A. Aabloo, J.O. Thomas.

Solid State Ionics, 192 (2011) 279.

Modelling electrode material utilization in the trench-model 3D-microbattery by finite element analysis

V. Zadin, H. Kasemägi, A. Aabloo, D. Brandell

Journal of Power Sources, 195 (2010) 6218.

Poly(ether amine) and cross-linked poly(propylene oxide) diacrylate thin-film polymer electrolyte for 3D-microbatteries

S. Tan, S. Walus. J. Hilborn, T. Gustafsson, D. Brandell

Electrochemistry Communications, 12 (2010) 1498.